ČESKOSLOVENSKÁ
SOCIALISTICKÁ
REPVBLIKA
(19)

FEDERÁLNÍ ÚŘAD
PRO VYNÁLEZY

(21) PV 1825 - 87.K
(22) Přihlášeno 18 03 87

(40) Zveřejněno 14 08 89
(45) Vydáno 30 07 90

(54) Způsob termické likvidace upotřebené odníklovací
lázně

(57) Způsob termické likvidace upotřebené odníklovací lázně obsahující kyanidy
alkalických kovů, m-nitrobenzensusilívonovou kyselinu a její soli včetně komplex-
ních sloučenin niklu a ohrádu spožíval-
jící v tom, že se upotřebená odníklova-
cí lázeň ředí vodou v hmotnostním po-
měru 1:1, načež se sníží se septahyd-
rátém síranu železnatého v množství
rovnajícím 2.5 až násobku vypočte-
ného množství potřebného k vytvoření
hexakyanatantu železnatého za přídav-
ného přídavku vočního skla v hmotnost-
ním poměru až 3 : 100 hmotnostních dí-
lů suspenze a potom se spalí s ener-
tickým uhlím.
Vynález se týká termické likvidace upotřebených odníklovacích lázní v galvanovnách.

Při povrchové úpravě výrobků ze železných kovů se používá elektrochemických způsobů nanášení níklu a chromu. Vápném níklové a chromové povlaky se stahují buď elektrochemicky, kyselinou dusičnou, nebo i směsí skládající se z m-nitrobenzensulfonové kyseliny, louhu sodného a kyanidu sodného.

Vyčerpaná, upotřebená lázeň s použitím m-nitrobenzensulfonové kyseliny, louhu sodného a kyanidu sodného obsahuje také komplexy Ni/CN⁻³, Ni/CN₂⁻ a další komplexy chelátového typu, dále nezrezagovalý kyanid sodný, louhu sodný a volnou kyselinu m-nitrobenzensulfonovou, případně její sodnou sůl. Likvidace těchto vyčerpaných odníklovacích lázní se dosud provádí tak, že po značné šedění užitkovou vodou se na směs původní chlorovým vápnem, uvolňující se chlor přes meziprodukty, jako je chlorhydrát, kyanid a kyanan, rozkládá kyanidy až na chlorid sodný, oxid uhličitý, dusík a vodu. Tento zavedený způsob není jen neekonomický, ale i ekologicky nevhodný. Odpadní vody i po vyřazení níklu a chromu jako hydroxidy jsou ještě při využití do veřejných vod zabavené nezrezagovanou kyselinou o-nitrobenzensulfonovou, případně jejími soli. Tím se znečišťují veřejné toky.

Bylo také popsáno zneškodňování kyanidových odpadů, konkrétně s obsahem kyanidu sodného, nikoliv však s obsahem těžkých kovů, jejich převěděním na komplexní formu známou reakcí se síranem železnatým a následujícím spálením, viz např. publikaci V. Ruml, M. Soukup: Likvidace toxických odpadů z kovopřemyslu, str. 102, SNtu Praha 1984. Podle tohoto známého způsobu se heptahydrazit síranu železnatého přidává v přeběhu 15 % stehochemického množství, přebytok síranu železnatého se zneužívá hydroxidem vápenatým, oxiduje se následně na vzduchu po přídění modrě skalice jako katalyzátoru a získávají se kovy.

Podstata vynalezu spočívá v tom, že upotřebené odníklovací lázeň po případném ztečené vodou a po přidění heptahydrátu síranu železnatého v přeběhu 250 až 300 % stehochemického množství se alkalizují vodou, sklo v množství až 3 % hmotnostních dílů na celkové množství suspenze, následně se bez dalších případů provede oxidace vzdušným kyslíkem a spálení na energetickém uhlí bohatém pepelem.

Způsobem podle vynalezu se provede likvidace upotřebených odníklovacích lázní termickou cestou. Nejprve podle známych chemických reakcí se přítomný kyanid sodný i jeho komplexy chelátového typu s niklem a chromem převedou na hexakyanobezlezatný sodný pomocí heptahydrátu síranu železnatého. Dalším přebytokem heptahydrátu síranu železnatého vznikají kyselina hexakyanobezlezatná V. Síranu železnatého, která vzdušným kyslíkem se roztřepí a vzniká modrý odstín. Změna tak Turnerlova modrě, které se však další oxidaci vzdušným kyslíkem mění až v modrou síranu. Schematické lze probíhající reakce zneškodňování kyanidových iontů, v následující kyanidu sodného označit tedy:

\[
x \cdot \text{FeSO}_4 \cdot 6 \text{NaH} \rightarrow \text{Na}_4 \left[\text{Fe(CN)}_6\right] \rightarrow \text{NaFe}_2\left[\text{Fe(CN)}_6\right] \rightarrow \text{NaFeFe}[\text{Fe(CN)}_6]_3
\]

Heptahydrátém síranu železnatého se současně roztřepují komplexy niklu a chromu. Přes přechodový vznik síranu nikelnatého a síranu chromatého vznikají nerezopustné sladěné hydroxidu nikelnatého a hydroxidu chromatého. V suspenzi zrezagovaných látek zůstává pouze nezrezagovaný m-nitrobenzensulfonový sodný.

V žáru topení, při teplotě 800 až 1000 °C se m-nitrobenzensulfonan sodný rozkládá na dusík, vodu, oxid uhličitý a síran. Při této teplotě se nikl a chrom váže na nezpopůstitelně kmeníčitý, které jsou obsaženy v popelu energetického uhlí. Tvorbou kmeníčitých podporuje i přípravek silné alkaliálního vápnitosti skla.

Zneškodnění upotřebených odníklovacích lázní lze současně provádět i s jinými odpadními solemi z povrchového zvířecích kovů, které rovněž obsahují kyanidy z kalcických pochodů nebo dusičnany a dusičnany z popoustělých lázní.
Příklad 1

Husté suspenze upotřebené odniklovací lázně se zředí přibližně v hmotnostním poměru 1 : 1 vodou. Přídavek heptahydruštu síranu železnatého odpovídá 2,5 až 3,0 násobku potřebného množství k vytvoření komplexu hexakyanozeleznatou sodného. Za stálého míchání se postupně přidává vypočtené množství průkrovitého heptahydruštu síranu železnatého, bez jakýchkoli dalších přídavků jiných látok. Při obsahu 6 % kyanidových lontů má zneškodnění lázeň toto složení: 50 hmot. dílů upotřebené odniklovací lázeň, 50 hmot. dílů vody, 50 hmot. dílů heptahydruštu síranu železnatého.

V průběhu míchání a postupného přídávání heptahydruštu síranu železnatého se mění koncentrace vodíkových lontů, přičemž pH nesmí klesnout pod hodnotu 9. Celá reakce probíhá v alkalickém prostředí a pokles pH pod 7 by znamenal předčasné ztracení síranu železnatého, a tím i jeho účinný kyanovodík během reakce. Maximální doba míchání je 30 minut. Potom se suspenze bez přídavku jiných látok vylévá přímo na energetické uhlí a ještě ve vlněkém stavu se dopravuje k přímému spalování v kotli. Zneškodnění suspenze se může také ještě v míchací mísit s děvným odpadem, jako jsou piliny, dřevěná kůra, štěpy apod., a jako sypká hmota doprovází spalování.

Příklad 2

Ke zvýšení účinnosti chemické vazby niklu a chromu na křemičitý ke zneškodnění suspenze se za stálého míchání přidává jeden až tři hmotnostní díly vodního skla na 100 hmotnostních dílů suspenze. Potom se provede spalování podle příkladu 1.

PŘEDMĚT VYNÁLEZU

Způsob termické likvidace upotřebené odniklovací lázně obsahující kyanidy alkalických kovů, hydroxidy alkalických kovů, m-nitrobenzen sulfonovou kyselinu a její soli včetně komplexních sloučení niklu a chromu, působením stechiometrického přebytku heptahydruštu síranu železnatého, alkalizací nad pH 9, oxidací vzdušným kyslíkem a spálením získané suspenze, vyznávající se tím, že se heptahydrušt síranu železnatého přidá ve stechiometrickém přebytku 250 až 300 % a provede se alkalizace přidáním až 3 % vodního skla na celkové množství suspenze.